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LETTER 

Forces Acting on Solid Spheres and Bubbles Moving 
Through Dense Liquid 

N. H. MARCH* and B. V. PARANJAPE? 

Oxford, OX1 3UB, UK 
?Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 251 

(Received 29 October 1991) 

*Theoretical Chemistry Department, University of Oxford, 5 South Parks Road, 

It is proposed that the force on a solid sphere moving in a dense liquid can be written, when reduced 
suitably to dimensionless units, as a function of three parameters: (i) The Reynolds number (ii) the ratio 
of two forces characteristic of the liquid and (iii) the ratio of two lengths, namely an interface thickness 
divided by the sphere radius. The relation of this to the Stokes regime is exhibited. The additional 
parameters entering when the sphere is replaced by a bubble are finally noted. 

KEY WORDS: Reynolds number, liquid structure factor, melting temperature. 

For a macroscopic solid sphere of radius R moving through a dense liquid with speed 
v, the magnitude F of the force acting on the sphere is first written as a product F,f: 
Here F, is constructed solely from thermodynamic properties of the unperturbed 
liquid. It is then argued that the dimensionless function f depend on three quantities, 
Re,  D, and a. Each of these is again dimensionless, Re being the Reynolds number, 
D, being solely dependent on the liquid-state properties, while a is the ratio of two 
lengths: an interface thickness divided by R. In the Stokes limit 

where q- is the shear viscosity, a non-equilibrium property of the liquid. This result 
(1) is known to be correct for small Reynolds number Re, defined by 

vR 

? 
Re = -d ,  

where d is the mass density of the liquid. While the present letter is largely based on 
the limit of small Reynolds number Re, we shall explore below the basic way the 
force F depends on the three dimensionless parameters just referred to, one of these 
being, of course Re in Eq. (2). 

273 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



274 N. H. MARCH AND B. V. PARANJAPE 

As above, we first separate the magnitude F of the force acting on the sphere into 
a product of two factors, F, and a dimensionless functionf 

F = F,f. (3) 

If the number density of the liquid is p and the thermal energy is k,T, then we shall 
define F, in terms of the corresponding ‘perfect gas pressure’ pk,T times an ‘area’ 
p-’ I3 .  If the liquid structure factor is S(q), then a well known result of fluctuation 
theory is that, in the long wavelength limit q -+ 0: 

S(0) = pk,Th., (4) 

where K ,  is the isothermal compressibility of the liquid. Hence we can write for Fo 

Next, we note from Eq. (1) that 

6 x r p R p Z i 3 ~ ,  
FStokes = Po[ s(o) ] 

which we shall proceed to write in the form 

where D, is defined by 

which is the ratio of two forces. Evidently, as with F, in Eq. (3, D, depends only on 
unperturbed liquid state properties. In contrast, however, to F,, D, involves the 
non-equilibrium quantity i I ,  through a force rq2/d. 

Thus, the first obvious result for the functionfin Eq. (3) is that, in the Stokes limit, 
it takes the form 

This form (9) is evidently a very special limit of 

f -me, D,, a). (10) 

Here, in addition to the two dimensionless parameters R,  and D, defined in Eqs. (2) 
and (8) respectively, we have also introduced the ratio a of two lengths: an interface 
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thickness linterface, measuring the distance over which the homogeneous liquid density 
p is perturbed by the presence of the macroscopic sphere, and the sphere radius R; 

It seems clear that a is a very small number and can be put equal to zero in the 
Stokes limit, where also the Reynolds number Re is a small parameter. We turn 
immediately below therefore to discuss D, in dense liquids at a characteristic 
temperature, which we take to be the melting temperature. 

Andrade’ has given a semiempirical formula for the shear viscosity q of dense 
liquids at the melting temperature T,. While his kinetic theory arguments would not 
command ready acceptance nowadays2, Brown and March3 have proposed a route 
to pass from a Green-Kubo formula for viscosity to the form of Andrade’s result (see 
also the later work of Zwanzig4 and March’). The result is 

with C a pure number and A4 the atomic mass. Substituting in Eq. (8) and utilizing 
Eq. (4) yields for D, the approximate form at the melting temperature: 

It is of interest to stress that the above, admittedly approximate, argument suggests 
that if we compare a variety of dense liquids at a characteristic temperature T,, then 
D, is almost constant. Of course, it must also be noted that q appearing in Eq. (8) is 
a strong function of temperature. Evidently, since the viscosity of liquids decreases 
with increasing temperature, D,I, in Eq. (13) is an upper bound to D, at arbitrary T. 

Though the main emphasis of this letter has to do with the sphere radius R of 
macroscopic dimensions, it is of interest to note that there is also a microscopic limit 
for which the force on the ‘solid sphere’ can be usefully discussed in terms of the 
dynamical structure factor S(q, w )  of the dense liquid. This generalizes the (static) 
liquid structure factor S(q) introduced above, and for the classical liquids under 
discussion in the present work: 

S(4, w), in fact, measures the probability that a neutron incident on the liquid will 
transfer momentum hq and energy hw to the liquid. The rate of change of momentum 
can then be related to the average of h4, say G, with respect to the probability S(q, 0). 

Since such an expression, from Newton’s Law, gives the force F, we interpret this as 
meaning that F/F0 tends to a finite value in this microscopic limit. Though F,, 
through Eq. (5 ) ,  is determined by thermodynamic quantities, is to be expected to 
depend on microscopic properties of the liquid and even at a characteristic tempera- 
ture such as T,,, will vary from one liquid to another. Although the role of the 
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Figure 1. Dimensionless measure of force F on solid sphere moving through liquid vs R,D, at 
characteristic temperature T,. Top horizontal line is determined solely by S(q, o) of the unperturbed dense 
liquid, provided AR, ,  D,, n = 0) is assumed to depend only on the single variable R,D,. Slope of line (i) 
at origin is unity. Lower line ( i i )  shows schematically reduction of slope for the case of bubble according 
to Eq. (16). 

parameter a is quite different in this microscopic limit, we propose in Figure 1 a 
schematic form of FIFO for dense liquids at temperature T,. In the form shown, since 
D,J,, has been demonstrated to be approximately constant, we have plotted F/Fo 
versus R,D,, when the Stokes result (7) has evidently slope unity. The dashed curve 
in Figure 1 indicates how the constant value proposed above is reached continuously 
from the Stokes limit, at a value of R,D, indicated by the vertical dashed line. 

We wish to add a brief comment on the case when the rigid sphere discussed 
above is replaced by a bubble. The new features to be incorporated into Eqs. (3)  and 
(10) are then the additional dimensionless parameters 

K = ri /V (15) 
and also the ratio of mass densities d/d ,  tj and d referring to bubble properties. In 
fact, in the macroscopic limit, the result (1) of Stokes is then to be generalized into 
the Hadamard-Rybezynski result6 

2 + 3K 
F = 4nrpR 

2[1 + K ] ’  

which reduces to Eq. (1) in the limit when the viscosity 4, and hence K in Eq. (15), 
tends to infinity. In other words, in the macroscopic limit, the density ratio does not 
enter. Of course, a discussion of the role of the dimensionless parameter a may well 
be necessary when one examines in detail the boundary conditions to be imposed in 
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solving the Navier-Stokes equation. Such questions are raised, and discussed, in the 
work of Paranjape7 and Paranjape and Robson' and will not therefore be elaborated 
further here. 
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